Tetrahedron Letters, Vol.30, No.37, pp 4987-4990, 1989 Printed in Great Britain 0040-4039/89 \$3.00 + .00 Pergamon Press plc

STRUCTURE OF COMPLESTATIN, A VERY STRONG INHIBITOR OF PROTEASE ACTIVITY OF COMPLEMENT IN THE HUMAN COMPLEMENT SYSTEM

Haruo Seto^{*}, Tomoyuki Fujioka, Kazuo Furihata, Isao Kaneko⁺, Shuji Takahashi⁺⁺

Institute of Applied Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113, Japan

⁺Bioscience Research Laboratories, ⁺⁺Fermentation Research Laboratories,

Sankyo Co. Ltd., Hiromachi, Shinagawa-ku, Tokyo 114, Japan

Summary: The structure of complestatin, which strongly inhibits the protease activity of complements in the human complement system, has been determined as shown in Fig. 2 mainly based on HMBC. Its structure is closely related to glycopeptide antibiotics.

Complestatin (I) is a peptide isolated from the mycelium of <u>Streptomyces</u> <u>lavendulae</u>¹⁾, and strongly inhibits the hemolysis of sensitized erythrocytes by the complement system²⁾. To the best of our knowledge, <u>I</u> is the most potent compound among the known inhibitors with anti-complement activity such as flufenamic acid³⁾, leupeptin⁴⁾ and K-76⁵⁾. In this paper we wish to report the structural determination of <u>I</u> facilitated by extensive use of Heteronuclear Multiple Bond Correlation (HMBC)⁶⁾.

The physicochemical properties of <u>I</u> were as follows: mp. >300°C (dec.), $[\alpha]_D^{24}$ =+24.5° (c=0.13, MeOH-0.01N NaOH 2:1); UV λ_{max}^{MeOH} (ϵ) 282 (13800) and 292 (13200) nm; IR ν_{max}^{KBr} 3400 (OH), 1650 and 1510 (amide) cm⁻¹; color reaction, positive to Liebermann and Ehrlich, negative to Molisch and ninhydrin; elemental analysis, found C 54.13, H 3.81, N 7.27, Cl 15.45%, calcd. for $C_{61}H_{45}O_{15}N_7Cl_6$, C 55.14, H 3.41, N 7.38, Cl 16.01; HR-FABMS; M⁺ (<u>m/z</u>), found 1325.1060, calcd. 1325.1110.

Due to severe overlapping of the 13 C signals in the aromatic region, the number of \underline{sp}^2 quaternary carbons was determined to be 24 by spin echo experiments⁷). The ¹H- and ¹³C-NMR spectral data summarized in Table 1 showed the presence of 1 X -NCH₃, 2 X CH₂, 6 X CH, 20 X -CH=, 24 X -C=, 1 X -COOH, 6 X - CO-NH- and 1 X -C=0.

Acid hydrolysis of <u>I</u> (1N-HCl/CH₃COOH, 105°C, 22 hr) gave three main products (<u>II</u>, <u>III</u> and <u>IV</u>). Two of them obtained in the ratio of 1:2 were identified as 4-hydroxyphenylglycine (<u>II</u>) and 3,5-dichloro-4-hydroxyphenylglycine (<u>III</u>) by spectral analysis. Their absolute configurations were determined to be both D by comparison with a standard compound ($[\alpha]_D^{25}$ =-128.7°; <u>II</u>, $[\alpha]_D^{25}$ =-125.5°), and an authentic sample with L-(+)-configuration

group	C-13	H-1 (J _{Hz})	group	C-13	H-1 (J _{Hz})	group	C-13	H-1 (J _{HZ})	
1 2 3 4 5 6 C=0 CH NH	127.8 128.2 115.3 157.1 115.3 128.2 171.3 55.8	7.109(8.0) 6.765(9.2) 6.765(9.2) 7.109(8.0) 5.065(7.2) 8.507(6.3)	1 2 3 4 D 5 6 C=0 CH CH2 NCH2	134.5 131.5 123.1 155.2 121.7 130.6 168.4 61.3 35.0 31.2	7.825(2.0,8.8) 6.867(2.6,8.2) 7.079(2.5,7.0) 7.192(2.0,8.6) 5.065(7.2) 3.050 2.985	9 C=0 CH CH2 NH 1 2 3 G 4 5	136.3 [°] 170.3 57.1 28.2 124.1 130.1 122.5 155.8 122.5	4.182 2.886, 3.5 8.863(6.8) 7.776	
1 2 3 4 B 5 6 C=0 CH NH	131.0 127.0 122.0 148.7 122.0 127.0 169.2 51.5	7.341 7.341 5.196(7.0) 8.741(6.2)	1 2 3 E 4 5 6 C=0 CH NH	126.4 129.5 131.1 139.4 149.6 110.5 167.6 55.0	5.108(3.5) 5.475(4.0) 5.563(8.4) 8.285(9.2)	6 αC=0 βC=0 obta: of e +87.1 IV9)	130.1 185.7 163.7 Lned b ndura 5°; <u>II</u> was	7.776 y acid hyd cidin ⁸⁾ (<u>I</u> , [α] ²⁵ =- determined	rolysis [α] ²⁵ = 81.6°). to be
1 2 3 4 C 5 6 C=0 CH NH	131.9 126.7 121.7 148.1 121.7 126.7 169.8 55.2	7.305 7.305 5.563(8.4) 7.877(7.8)	1 2 3 4 5 F 6 7 8	123.6 111.5 126.3 118.4 123.7 134.4 114.4	10.9 7.272(2.8) 7.435(9.0) 6.830(1.5,8.2) 7.249	2-(3 phen acid comp the car car	,5-dic) yl)-2,3 based arison re ex bon i bon (nloro-4-hyd 2-dihydroxy 1 on NMR sj with <u>III</u> . isted no n <u>I</u> , the C-2) of	acetic pectral Since ketal ketal IV was

Table 1 13 C and 1 H NMR spectral data of complexitatin (in DMSO-d₆)

present as a ketone in the parent compound¹⁰⁾.

Detailed analysis of the COSY spectrum of I revealed the presence of the following units; 4 X -CO-NH-CH-, 1 X -CO-NH-CH-CH₂-, 1 x -CH₂-CH-N-, 2 X 1,4disubstituted aromatic systems and two ortho-coupled aromatic protons.

Analysis of the HMBC spectrum of I established seven partial structures, i.e., six amino acid units and one fragment with a ketone function (A to F and G, respectively, in Fig. 1). The arrows in Fig. 1 indicate long range couplings between protons and carbons $({}^{2}J_{C-H} \text{ or } {}^{3}J_{C-H})$. It is clear that <u>II</u>, III. and IV obtained by acid hydrolysis were originated from unit A, units B and C, and unit G, respectively. Taking account of the overlapping carbonyl carbons, Fig. 1 accommodates all the carbons present in I.

Non equivalent proton chemical shifts of D-2 and D-6, and D-3 and D-5 of the symmetric aromatic side chain in partial structure D suggested that the oxygen atom at D-4 is protected by a bulky group which restricts free rotation of the aromatic ring D.

The large ${}^{1}J_{C-H}$ value 11 observed with F-2 proton together with positive Ehrlich and Liebermann reactions of I indicated the presence of an indole

ring in unit F. This structure is supported by the ${}^{2}J_{C-H}$ and ${}^{3}J_{C-H}$ long range couplings between F-2, F-5 and F-8 protons and relevant carbons shown in Fig. 1. 169.2 In addition, the direct linkage between F-7 and E-3 carbons was revealed by long range coupling between E-3 (δ_{C} 131.0) and the protons at F-6 ($\delta_{\rm H}$ 6.830) and F-8 ($\delta_{\rm H}$ 7.249), and F-7 (δ_{C} 134.5) and the protons at F-5 (δ_H 7.435) and E-2 ($\delta_{\rm H}$ 5.108).

The sequence of six amino acid units could be obtained by analysis of long range couplings between α -methine and/or amide protons and the carbonyl carbon of the adjacent amino acid fragment (see Fig. 1). The analysis was started from unit D, in which the long range couplings between the N-methyl protons and a carbonyl carbon ($\delta_{\rm C}$ 169.2) enabled to distinguish the carbonyl carbon ($\delta_{\rm C}$ 168.4) in the unit D from one belonging to the next amino acid residue ($\delta_{\rm C}$ 169.2). The latter carbonyl carbon is present in unit B connecting units B and D. By repeating this analytical procedure, the sequence A-D-B-E-C-F- could be established. Since unit G gave <u>IV</u> (vide supra), G must be located at the next position of unit F.

As explained above, the phenolic hydroxy group of unit D must be protected to restrict free rotation of the ring D. Since acid hydrolysis gave phenolic compounds <u>II</u>, <u>III</u> and <u>IV</u> (vide supra) which apparently derived from

units A, B, C and G, unit D must be combined to one of the hydroxy groups of unit E. This position was determined by observing the deuterium-induced upfield shift in the ¹³C-NMR spectrum of <u>I</u> taken in d₆-DMSO added with one drop of 1:1 mixture of H₂O and D₂O. The carbon signal of E-5 ($\delta_{\rm C}$ 149.6) showed no shift, while line broadening was observed with E-4 resonance ($\delta_{\rm C}$ 139.4) suggesting the linkage of unit D to E-5 carbon. Thus, the structure of complestatin is established as shown in Fig. 2.

<u>I</u> is structurally related to glycopeptide antibiotics such as vancomycin¹²⁾, ristocetin¹³⁾, teicoplanin¹⁴⁾ and chloropolysporin¹⁵⁾. The main differences are that <u>I</u> has no sugar units, and possesses the indole nucleus instead of the modified tyrosine or β -hydroxytyrosine unit.

It is interesting that the biological activities of \underline{I} and glycopeptide antibiotics are markedly different; the latter show very strong antibacterial activity to Gram positive bacteria, while \underline{I} inhibited the growth of a few Gram positive bacteria at a very high concentration (ca. 2000 µg/ml). Tested so far, glycopeptide antibiotics showed no anti-complementary activity. It is also very important that a deglycosylated derivative of chloropolysporin, which had almost same activity as the parent compound <u>in</u> <u>vitro</u>,¹⁶) was inactive against the complementary system¹⁷). These findings suggest that difference of the biological activities between glycopeptide antibiotics and complestatin is not due to the presence of sugar units in the former group.

Acknowledgment: This work was supported in part by a Grant-in-Aid for Developmental Scientific Research, The Ministry of Education, Science and Culture, Japan (62860014 to H.S.).

References and Footnotes

1) 231	I. Kaneko, K. Kamoshida, S. Takahashi, J. Antibiot., 42 , 236 (1989). I. Kaneko, D. T. Fearon, K. F. Ausfen, J. Immunol., 124 , 1194 (1980) T. W. Harrity, M. B. Goldlust, Biochem. Pharmacol., 23 , 3170 (1974).
55	H. Kaise et al., J.C.S. Chem. Comm., 726, (1979).
6) 7}	K. Hong et al., J. Immunol., 122, 2418 (1979). A. Bax, M. F. Summers, J. Am. Chem. Soc., 107, 2093 (1986). M. R. Bendall et al., J.C.S. Chem. Comm., 1938 (1982). M. Asai et al. J. Antibiot. 21 (1968)
ۆۋ	Physicochemical properties of IV were as follows: $C_{PH_4}O_{J_4}C_{J_2}$, HB-EIMS found 233.9503, calca. 233.9487; IR v (KBr) 1720, 1670, 1580 cm ⁻¹ ; NMR (in CD_30D) δ_{C_1} 171.7 (C-1), 101.5 (C-2), 131.1 (C-3), 128.1 (C-4, 8),
10)	123.3 (C-5, 7) and 151.3 (C-6), $\delta_{\rm H}$ 7.52 (singlet). Similar phenomenon was observed with phenylglyoxylic acid, which showed the molecular ion peak corresponding to the store form. On the other
	hand, the H-NMR spectrum of this compound indicated the presence of a 1:1 mixture of the ketone and hydrated forms 12 hours after dissolving in
11)	a solvent.
11)	M. S. Morales-Rios, P. Joseph-Nathan, Magn. Reson. Chem., 25, 911 (1987).
122	C. M. Harris et al. J. Am. Chem. Soc. 105 [6915] (1983).
142	A. H. Hunt et al., J. Am. Chem. Soc., 106, 4891 (1984).
<u>1</u> 2{	T. Takatsu et al., J. Antibiotics, 40 , 933 (1987). It was reported that aglucovancomycin showed ca. 75% activity of the
17)	parent compound. F. J. Marschall, J. Med. Chem., 8, 18 (1965). I. Kaneko and S. Takahashi, unpublished data.

(Received in Japan 5 June 1989)